Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction.

نویسندگان

  • Scott G Summerfield
  • Kevin Read
  • David J Begley
  • Tanja Obradovic
  • Ismael J Hidalgo
  • Sara Coggon
  • Ann V Lewis
  • Rod A Porter
  • Phil Jeffrey
چکیده

The dispositions of 50 marketed central nervous system (CNS) drugs into the brain have been examined in terms of their rat in situ (P) and in vitro apparent membrane permeability (P(app)) alongside lipophilicity and free fraction in rat brain tissue. The inter-relationship between these parameters highlights that both permeability and brain tissue binding influence the uptake of drugs into the CNS. Hydrophilic compounds characterized by low brain tissue binding display a strong correlation (R(2) = 0.82) between P and P(app), whereas the uptake of more lipophilic compounds seems to be influenced by both P(app) and brain free fraction. A nonlinear relationship is observed between logP(oct) and P over the 6 orders of magnitude range in lipophilicity studied. These findings corroborate recent reports in the literature that brain penetration is a function of both rate and extent of drug uptake into the CNS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commentary: New View on Treatment of Drug Dependence

In the 1960s, discovery of pleasure system (defined as reward system) in the brain that may underlie drug reward and addiction encouraged many scientists to investigate the mechanisms by which drug abuse affects central nervous system function. In this regard, investigators developed several drugs targeting the brain reward system for drug dependence therapy. However, no positive results obtain...

متن کامل

Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

Central nervous system (CNS) drug disposition is dictated by a drug's physicochemical properties and its ability to permeate physiological barriers. The blood-brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma ...

متن کامل

Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice.

Unbound fractions in mouse brain and plasma were determined for 31 structurally diverse central nervous system (CNS) drugs and two active metabolites. Three comparisons were made between in vitro binding and in vivo exposure data, namely: 1) mouse brain-to-plasma exposure versus unbound plasma-to-unbound brain fraction ratio (fu(plasma)/fu(brain)), 2) cerebrospinal fluid-to-brain exposure versu...

متن کامل

P 119: Role of Gut Bacteria on Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease that is the most common type of dementia.AD includes 60_80% of dementia and most people with AD have more than 65 years old.AD causes losing neuronal activity by abnormal proteins. Plaques of beta-amyloid and tangles of “tau” protein can lead to AD. Recently evidence has found that AD may come from outside of central nerv...

متن کامل

Evaluation of changes in testosterone concentration of the rat central nervous system following progesterone administration

Neurosteroids are steroids that are produced in the central nervous system (CNS). While progesterone and dehydroepiandostendione (the precursors of testosterone) are among the identified neurosteroids, it is not clear that testosterone could be considered as a neurosteroid. The testosterone synthesis has been demonstrated in the brain of castrated frog, but not in the rat brain. In the present ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 322 1  شماره 

صفحات  -

تاریخ انتشار 2007